Numerosi risultati sperimentali hanno evidenziato una grande influenza dell'interazione chimico-fisica fra scheletro solido e liquido interstiziale sulle caratteristiche fisiche e sulle proprietà meccaniche dei terreni argillosi, anche nel caso di materiali fortemente sovraconsolidati. Si consideri, ad esempio, la curva edometrica \(e - \log \sigma'_v \) riportata in Fig. 1, relativa ad un provino indisturbato dell'argilla di Bisaccia (Di Maio e Fenelli, 1997). Il provino è stato dapprima consolido, per successivi incrementi di carico, fino a \(\sigma'_v = 8000 \) kPa e successivamente è stato esposto a soluzione satura di NaCl. Esaurita la consolidazione osmotica (tratto AB), il provino è stato esposto ad acqua distillata. Ciò ha indotto un rigonfiamento osmosico di entità trascurabile, al termine del quale le tensioni assiali sono state ridotte a 1200 kPa. Al termine del rigonfiamento meccanico, il provino è stato esposto nuovamente a soluzione satura di NaCl, inducendo così un nuovo processo di consolidazione osmotica (tratto CD). Lo scarico a 600 kPa successivo all'interazione con l'elettrolita ha prodotto solo effetti trascurabili. Una nuova esposizione ad acqua distillata (E), a carichi esterni costanti, ha invece provocato un notevole aumento di volume (EF), in seguito al quale il rigonfiamento per scarico tensionale ha ripreso l'andamento precedente ed è stato tanto elevato da far fuoruscire il materiale dall'anello.

E' noto che l'esposizione ad acqua o a soluzioni saline provoca flussi osmotici che dipendono anche dalla composizione del liquido interstiziale (Barbour e Ferdlund, 1989; Mitchell, 1993; Di Maio, 1994; 1996). Occorre quindi determinare tale composizione sia per interpretare correttamente risultati come quello mostrato, sia per prevedere i comportamenti in situ. L'analisi è stata eseguita su due campioni di argille di Bisaccia e di frana Marino (PZ). I materiali sono stati lentamente compressi in una cella di "squeezing" e il liquido estratto è stato succes-
sivamente analizzato.

Essendo risultate le concentrazioni ioniche molto inferiori a quelle attese (le argille esaminate sono di origine marina), si è posto il problema di valutare se il liquido estratto con tale tecnica abbia la stessa concentrazione di quello interstiziale. In teoria, infatti, l'argilla potrebbe comportarsi come una "membrana semipermeabile" che consente la fuoriuscita dell'acqua ma non degli ioni, e tale comportamento è tanto più probabile quanto minore è la porosità del materiale (Mitchell, 1993). Si è pertanto svolta un'ulteriore indagine. E' stata simulata la sedimentazione del materiale ridotto in polvere in una soluzione di NaCl (35g/l). Dopo circa un mese il liquido supernatante (che è ragionevole ipotizzare di concentrazione uguale a quella interstiziale) è stato analizzato e il materiale sedimentato è stato sottoposto a "squeezing". Sono stati analizzati numerosi campioni di liquido estratti a porosità diverse. I risultati mostrano (Fig.2) che la concentrazione dello ione Na⁺ varia poco con l'indice dei pori e assume valori non molto diversi da quello della soluzione originaria. Si può quindi ritenere che i valori di concentrazione determinati per i due campioni indisturbati di di Bisaccia e frana Marino fossero realistici.

Sono state quindi eseguite prove di compressione edometrica usando soluzioni di cella simili a quelle interstiziali. Altre prove sono state eseguite con acqua distillata e con soluzione di NaCl (35g/l, come in acqua marina). In Fig.3 sono riportati i risultati ottenuti per tre provini di argilla di Bisaccia sottoposti a due cicli di carico e scarico. Si può notare che la deformabilità del provino immerso nella sua soluzione naturale è inferiore a quella del provino immerso in acqua. Inoltre il ramo di rigonfiamento del secondo ciclo è praticamente sovrapponibile a quello del primo in presenza della soluzione naturale (e di quella con 35g/l di NaCl), presenta invece pendenze maggiori nel caso del provino in acqua distillata.

Un comportamento simile a quello descritto è stato osservato anche per il materiale di frana Marino. In Fig.4 sono riportati risultati che mostrano, ancora una volta, la maggiore deformabilità in fase di scarico del provino in acqua.

La problematica relativa all'interpretazione qualitativa di questi comportamenti è stata ampiamente discussa (Di Maio, 1996; Di Maio e Fenelli, 1997). Un ulteriore approfondimento non può che passare attraverso la modellazione matematica. Un primo passo in tale direzione è stato compiuto cercando di adattare ai casi descritti il modello messo a punto da Barbour e Fredlund (1989) per la simulazione del processo di consolidazione di una massa argillosa satura indotto dalla esposizione ad una soluzione salina a concentrazione maggiore di quella interstiziale.

Il modello si basa sull'ipo-
Fig. 3. Confronto fra le curve edometriche ottenute per provini indisturbati con liquidi di cella diversi.

tesi che, in tali condizioni, si possano verificare due processi distinti: un flusso osmotico del solo solvente verso le regioni a maggiore concentrazione, con aumento delle tensioni efficaci, e un flusso ionico verso le regioni a minor concentrazione, con riduzione delle forze elettrostatiche interparticellari.

Entrambi i processi inducono riduzioni di volume e il prevalere dell’uno o dell’altro dipende dall’efficienza osmotica ω (indice della capacità dell’argilla di comportarsi come una membrana semipermeabile ideale) e dalla compressibilità osmotica m_π (deformabilità volumetrica dell’argilla associata a variazioni di concentrazione ionica nella soluzione interssiale).

In Fig. 5 i risultati teorici sono confrontati con i dati sperimentali relativi alla bentonite di Ponza ricostituita con acqua distillata ed esposta a una soluzione 0,5 M di NaCl. La curva che meglio interpreta i risultati sperimentali è stata ottenuta per un valore del coefficiente di diffusione apparente (Shackelford e Daniel, 1991) $D^*=2\times10^{-6}$ cm2/s, per una compressibilità osmotica $m_\pi=0,74$ kPa$^{-1}$ e per $\omega=0$. Si può osservare infatti che all’aumentare dell’efficienza di membrana tende ad annullarsi il ritardo iniziale, ritardo che sperimentalmente è sempre stato riscontrato, sia per i materiali ricostituiti che per quelli indisturbati (Di Maio, 1996). Passando al rigonfiamento osmotico, che è caratterizzato
Infatti la riduzione del coefficiente D^* quantifica eccessivamente l’intero processo ed anche l’introduzione di una soglia di concentrazione per lo sviluppo del rigonfiamento non migliora i risultati.

I motivi per cui il modello non funziona potrebbero essere dovuti ad eccessive semplificazioni, quali, ad esempio, quella di associare alla variazione di concentrazione ionica nella soluzione interstiziale soltanto una variazione delle forze elettrostatiche intergranulari, e quella di trascurare del tutto i potenziali di idratazione. Lo sviluppo futuro dello studio riguarda proprio il tentativo di una modellazione più soddisfacente.

![Fig. 5. Confronto fra i risultati teorici e i risultati sperimentali della consolidazione provocata da esposizione a soluzione 0,5 M NaCl.](image)

![Fig. 6. Confronto fra i risultati teorici e i risultati sperimentali relativi al rigonfiamento prodotto da una esposizione ad acqua successiva alla consolidazione di Fig. 5.](image)

Bibliografia

